高考首页| 高招动态| 热点专题| 政策解析| 资源导航| 高考题库| 名校试题| 招生简章| 专业解析| 专家指导| 状元谈经| 心理辅导| 高考复读

名师解读:2010年广东高考(数学)考试大纲

2009-11-03 11:59 来源: 天星教育网 作者: 陈岳廷 方昆东 夏献平 [打印] [评论]  高三如何有效进入复习状态

    本文内容来源于试题调研——解读2010广东《考试说明》,转载请注明出处。

    一、对比《考试说明》,把握冷、热点

    1.冷点:课时比例超过分值比例较大的知识点有导数及其应用、计数原理、选修系列4部分,但要注意导数是处理函数问题的一个重要工具,所以在“淡化”冷点时,不要忘记冷点中有热点。

    2.热点:在高考中分值比例超过课时比例较大的知识点有函数及其应用、统计、解三角形、数列、不等式、圆锥曲线、推理与证明等部分。《考试说明》中,除圆锥曲线外,都是《考试说明》中要求较高的部分。

    二、研析《考试说明》,明确核心考查点

    1.集合与常用逻辑用语:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。虽然不要求判断一个命题是否是复合命题,以及用真值表判断复合命题的真假,但需要特别注意能够对含有一个量词的全称命题进行否定。每年的高考都会有一道选择题,估计今年将会是一道考查常用逻辑用语的选择题。

    2.函数:对分段函数提出了明确的要求,要求能够简单应用;奇偶性只限于会判断具体函数的奇偶性;反函数问题只涉及指数函数和对数函数,既不要求掌握反函数的一般定义,也不要求会求某个具体函数的反函数;注意“三个二次”的问题,更加突出了函数的应用;注意函数零点的概念及其应用;需要注意一些函数与方程的综合问题,以及问题表述方式的变化。

    3.立体几何:必修第一部分中空间几何体更强调几何的直观性,使用了四个“画出”,强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查,预测其考查方式为:①考查对三视图的理解;②与有关的计算问题联系起来进行考查。第二部分的位置关系侧重于利用空间向量来进行证明和计算,在高考中,会有空间三种角的各种三角函数值的求解问题。

    4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。

    5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”,有关三角函数的综合解答题每年都有,必须高度重视,不过,这类题都是基础的中档题。

    6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题;会用向量方法解决简单的力学问题与其他一些实际问题。这就要求我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。在高考中对这部分知识的考查方式为:①考查平面向量的性质和运算法则及基本运算技能。要求考生掌握平面向量的和、差、数乘和内积的运算法则,理解其直观的几何意义,并能正确地进行运算。②考查向量的坐标表示,向量的线性运算。 ③和其他数学内容结合在一起,如和函数、曲线、数列等基础知识结合,考查逻辑推理和运算能力等综合运用数学知识解决问题的能力。题目对基础知识和技能的考查一般由浅入深,入手不难,但要圆满完成解答,则需要严密的逻辑推理和准确的计算。

    7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。这里“具体的问题情境”,也包括由递推关系式给出的数列,这是近两年重点考查的内容,预计今后还是一个热点和难点。

    8.不等式:要求“对给定的一元二次不等式,会设计求解的程序框图”,会解“绝对值不等式”和“分式不等式”。 会用基本不等式:a+b2≥ab(a,b≥0)解决简单的最大(小)值问题。

    9.导数:理解导数的几何意义,要求我们必须关注曲线的切线问题;对于复合函数的导数,也仅限于会求简单的复合函数[仅限于形如f(ax+b)]的导数;能利用导数研究函数的单调性,会求函数的单调区间;会用导数求函数的极大值、极小值;会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次),这是导数应用的热点内容。

    10.算法:应该侧重“算法”的三种基本逻辑结构与“程序框图”的复习,理解五种“基本算法语句”即可,特别是“程序框图”与数列、不等式的综合。这类题经常与数列及统计等知识进行小综合。